rsa暴力破解 2022,rsa暴力破解

hacker2年前黑客业务80

加密基础知识二 非对称加密RSA算法和对称加密

上述过程中,出现了公钥(3233,17)和私钥(3233,2753),这两组数字是怎么找出来的呢?参考 RSA算法原理(二)

首字母缩写说明:E是加密(Encryption)D是解密(Decryption)N是数字(Number)。

1.随机选择两个不相等的质数p和q。

alice选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

2.计算p和q的乘积n。

n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

3.计算n的欧拉函数φ(n)。称作L

根据公式φ(n) = (p-1)(q-1)

alice算出φ(3233)等于60×52,即3120。

4.随机选择一个整数e,也就是公钥当中用来加密的那个数字

条件是1 e φ(n),且e与φ(n) 互质。

alice就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

5.计算e对于φ(n)的模反元素d。也就是密钥当中用来解密的那个数字

所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。ed ≡ 1 (mod φ(n))

alice找到了2753,即17*2753 mode 3120 = 1

6.将n和e封装成公钥,n和d封装成私钥。

在alice的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

上述故事中,blob为了偷偷地传输移动位数6,使用了公钥做加密,即6^17 mode 3233 = 824。alice收到824之后,进行解密,即824^2753 mod 3233 = 6。也就是说,alice成功收到了blob使用的移动位数。

再来复习一下整个流程:

p=17,q=19

n = 17 19 = 323

L = 16 18 = 144

E = 5(E需要满足以下两个条件:1E144,E和144互质)

D = 29(D要满足两个条件,1D144,D mode 144 = 1)

假设某个需要传递123,则加密后:123^5 mode 323 = 225

接收者收到225后,进行解密,225^ 29 mode 323 = 123

回顾上面的密钥生成步骤,一共出现六个数字:

p

q

n

L即φ(n)

e

d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。那么,有无可能在已知n和e的情况下,推导出d?

(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。此外,RSA的缺点还有:

A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。

B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此, 使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法 。

加密和解密是自古就有技术了。经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫无意义的数字苦恼,忽然灵光一闪,翻出一本厚书,将第一个数字对应页码数,第二个数字对应行数,第三个数字对应那一行的某个词。数字变成了一串非常有意义的话:

Eat the beancurd with the peanut. Taste like the ham.

这种加密方法是将原来的某种信息按照某个规律打乱。某种打乱的方式就叫做密钥(cipher code)。发出信息的人根据密钥来给信息加密,而接收信息的人利用相同的密钥,来给信息解密。 就好像一个带锁的盒子。发送信息的人将信息放到盒子里,用钥匙锁上。而接受信息的人则用相同的钥匙打开。加密和解密用的是同一个密钥,这种加密称为对称加密(symmetric encryption)。

如果一对一的话,那么两人需要交换一个密钥。一对多的话,比如总部和多个特工的通信,依然可以使用同一套密钥。 但这种情况下,对手偷到一个密钥的话,就知道所有交流的信息了。 二战中盟军的情报战成果,很多都来自于破获这种对称加密的密钥。

为了更安全,总部需要给每个特工都设计一个不同的密钥。如果是FBI这样庞大的机构,恐怕很难维护这么多的密钥。在现代社会,每个人的信用卡信息都需要加密。一一设计密钥的话,银行怕是要跪了。

对称加密的薄弱之处在于给了太多人的钥匙。如果只给特工锁,而总部保有钥匙,那就容易了。特工将信息用锁锁到盒子里,谁也打不开,除非到总部用唯一的一把钥匙打开。只是这样的话,特工每次出门都要带上许多锁,太容易被识破身份了。总部老大想了想,干脆就把造锁的技术公开了。特工,或者任何其它人,可以就地取材,按照图纸造锁,但无法根据图纸造出钥匙。钥匙只有总部的那一把。

上面的关键是锁和钥匙工艺不同。知道了锁,并不能知道钥匙。这样,银行可以将“造锁”的方法公布给所有用户。 每个用户可以用锁来加密自己的信用卡信息。即使被别人窃听到,也不用担心:只有银行才有钥匙呢!这样一种加密算法叫做非对称加密(asymmetric encryption)。非对称加密的经典算法是RSA算法。它来自于数论与计算机计数的奇妙结合。

1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。这种新的加密模式被称为"非对称加密算法"。

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。

1.能“撞”上的保险箱(非对称/公钥加密体制,Asymmetric / Public Key Encryption)

数据加密解密和门锁很像。最开始的时候,人们只想到了那种只能用钥匙“锁”数据的锁。如果在自己的电脑上自己加密数据,当然可以用最开始这种门锁的形式啦,方便快捷,简单易用有木有。

但是我们现在是通信时代啊,双方都想做安全的通信怎么办呢?如果也用这种方法,通信就好像互相发送密码保险箱一样…而且双方必须都有钥匙才能进行加密和解密。也就是说,两个人都拿着保险箱的钥匙,你把数据放进去,用钥匙锁上发给我。我用同样的钥匙把保险箱打开,再把我的数据锁进保险箱,发送给你。

这样看起来好像没什么问题。但是,这里面 最大的问题是:我们两个怎么弄到同一个保险箱的同一个钥匙呢? 好像仅有的办法就是我们两个一起去买个保险箱,然后一人拿一把钥匙,以后就用这个保险箱了。可是,现代通信社会,绝大多数情况下别说一起去买保险箱了,连见个面都难,这怎么办啊?

于是,人们想到了“撞门”的方法。我这有个可以“撞上”的保险箱,你那里自己也买一个这样的保险箱。通信最开始,我把保险箱打开,就这么开着把保险箱发给你。你把数据放进去以后,把保险箱“撞”上发给我。撞上以后,除了我以外,谁都打不开保险箱了。这就是RSA了,公开的保险箱就是公钥,但是我有私钥,我才能打开。

2.数字签名

这种锁看起来好像很不错,但是锁在运输的过程中有这么一个严重的问题:你怎么确定你收到的开着的保险箱就是我发来的呢?对于一个聪明人,他完全可以这么干:

(a)装作运输工人。我现在把我开着的保险箱运给对方。运输工人自己也弄这么一个保险箱,运输的时候把保险箱换成他做的。

(b)对方收到保险箱后,没法知道这个保险箱是我最初发过去的,还是运输工人替换的。对方把数据放进去,把保险箱撞上。

(c)运输工人往回运的时候,用自己的钥匙打开自己的保险箱,把数据拿走。然后复印也好,伪造也好,弄出一份数据,把这份数据放进我的保险箱,撞上,然后发给我。

从我的角度,从对方的角度,都会觉得这数据传输过程没问题。但是,运输工人成功拿到了数据,整个过程还是不安全的,大概的过程是这样:

这怎么办啊?这个问题的本质原因是,人们没办法获知,保险箱到底是“我”做的,还是运输工人做的。那干脆,我们都别做保险箱了,让权威机构做保险箱,然后在每个保险箱上用特殊的工具刻上一个编号。对方收到保险箱的时候,在权威机构的“公告栏”上查一下编号,要是和保险箱上的编号一样,我就知道这个保险箱是“我”的,就安心把数据放进去。大概过程是这样的:

如何做出刻上编号,而且编号没法修改的保险箱呢?这涉及到了公钥体制中的另一个问题:数字签名。

要知道,刻字这种事情吧,谁都能干,所以想做出只能自己刻字,还没法让别人修改的保险箱确实有点难度。那么怎么办呢?这其实困扰了人们很长的时间。直到有一天,人们发现:我们不一定非要在保险箱上刻规规矩矩的字,我们干脆在保险箱上刻手写名字好了。而且,刻字有点麻烦,干脆我们在上面弄张纸,让人直接在上面写,简单不费事。具体做法是,我们在保险箱上嵌进去一张纸,然后每个出产的保险箱都让权威机构的CEO签上自己的名字。然后,CEO把自己的签名公开在权威机构的“公告栏”上面。比如这个CEO就叫“学酥”,那么整个流程差不多是这个样子:

这个方法的本质原理是,每个人都能够通过笔迹看出保险箱上的字是不是学酥CEO签的。但是呢,这个字体是学酥CEO唯一的字体。别人很难模仿。如果模仿我们就能自己分辨出来了。要是实在分辨不出来呢,我们就请一个笔迹专家来分辨。这不是很好嘛。这个在密码学上就是数字签名。

上面这个签字的方法虽然好,但是还有一个比较蛋疼的问题。因为签字的样子是公开的,一个聪明人可以把公开的签字影印一份,自己造个保险箱,然后把这个影印的字也嵌进去。这样一来,这个聪明人也可以造一个相同签字的保险箱了。解决这个问题一个非常简单的方法就是在看保险箱上的签名时,不光看字体本身,还要看字体是不是和公开的字体完全一样。要是完全一样,就可以考虑这个签名可能是影印出来的。甚至,还要考察字体是不是和其他保险柜上的字体一模一样。因为聪明人为了欺骗大家,可能不影印公开的签名,而影印其他保险箱上的签名。这种解决方法虽然简单,但是验证签名的时候麻烦了一些。麻烦的地方在于我不仅需要对比保险箱上的签名是否与公开的笔迹一样,还需要对比得到的签名是否与公开的笔迹完全一样,乃至是否和所有发布的保险箱上的签名完全一样。有没有什么更好的方法呢?

当然有,人们想到了一个比较好的方法。那就是,学酥CEO签字的时候吧,不光把名字签上,还得带上签字得日期,或者带上这个保险箱的编号。这样一来,每一个保险箱上的签字就唯一了,这个签字是学酥CEO的签名+学酥CEO写上的时间或者编号。这样一来,就算有人伪造,也只能伪造用过的保险箱。这个问题就彻底解决了。这个过程大概是这么个样子:

3 造价问题(密钥封装机制,Key Encapsulation Mechanism)

解决了上面的各种问题,我们要考虑考虑成本了… 这种能“撞”门的保险箱虽然好,但是这种锁造价一般来说要比普通的锁要高,而且锁生产时间也会变长。在密码学中,对于同样“结实”的锁,能“撞”门的锁的造价一般来说是普通锁的上千倍。同时,能“撞”门的锁一般来说只能安装在小的保险柜里面。毕竟,这么复杂的锁,装起来很费事啊!而普通锁安装在多大的保险柜上面都可以呢。如果两个人想传输大量数据的话,用一个大的保险柜比用一堆小的保险柜慢慢传要好的多呀。怎么解决这个问题呢?人们又想出了一个非常棒的方法:我们把两种锁结合起来。能“撞”上的保险柜里面放一个普通锁的钥匙。然后造一个用普通的保险柜来锁大量的数据。这样一来,我们相当于用能“撞”上的保险柜发一个钥匙过去。对方收到两个保险柜后,先用自己的钥匙把小保险柜打开,取出钥匙。然后在用这个钥匙开大的保险柜。这样做更棒的一个地方在于,既然对方得到了一个钥匙,后续再通信的时候,我们就不再需要能“撞”上的保险柜了啊,在以后一定时间内就用普通保险柜就好了,方便快捷嘛。

以下参考 数字签名、数字证书、SSL、https是什么关系?

4.数字签名(Digital Signature)

数据在浏览器和服务器之间传输时,有可能在传输过程中被冒充的盗贼把内容替换了,那么如何保证数据是真实服务器发送的而不被调包呢,同时如何保证传输的数据没有被人篡改呢,要解决这两个问题就必须用到数字签名,数字签名就如同日常生活的中的签名一样,一旦在合同书上落下了你的大名,从法律意义上就确定是你本人签的字儿,这是任何人都没法仿造的,因为这是你专有的手迹,任何人是造不出来的。那么在计算机中的数字签名怎么回事呢?数字签名就是用于验证传输的内容是不是真实服务器发送的数据,发送的数据有没有被篡改过,它就干这两件事,是非对称加密的一种应用场景。不过他是反过来用私钥来加密,通过与之配对的公钥来解密。

第一步:服务端把报文经过Hash处理后生成摘要信息Digest,摘要信息使用私钥private-key加密之后就生成签名,服务器把签名连同报文一起发送给客户端。

第二步:客户端接收到数据后,把签名提取出来用public-key解密,如果能正常的解密出来Digest2,那么就能确认是对方发的。

第三步:客户端把报文Text提取出来做同样的Hash处理,得到的摘要信息Digest1,再与之前解密出来的Digist2对比,如果两者相等,就表示内容没有被篡改,否则内容就是被人改过了。因为只要文本内容哪怕有任何一点点改动都会Hash出一个完全不一样的摘要信息出来。

5.数字证书(Certificate Authority)

数字证书简称CA,它由权威机构给某网站颁发的一种认可凭证,这个凭证是被大家(浏览器)所认可的,为什么需要用数字证书呢,难道有了数字签名还不够安全吗?有这样一种情况,就是浏览器无法确定所有的真实服务器是不是真的是真实的,举一个简单的例子:A厂家给你们家安装锁,同时把钥匙也交给你,只要钥匙能打开锁,你就可以确定钥匙和锁是配对的,如果有人把钥匙换了或者把锁换了,你是打不开门的,你就知道肯定被窃取了,但是如果有人把锁和钥匙替换成另一套表面看起来差不多的,但质量差很多的,虽然钥匙和锁配套,但是你却不能确定这是否真的是A厂家给你的,那么这时候,你可以找质检部门来检验一下,这套锁是不是真的来自于A厂家,质检部门是权威机构,他说的话是可以被公众认可的(呵呵)。

同样的, 因为如果有人(张三)用自己的公钥把真实服务器发送给浏览器的公钥替换了,于是张三用自己的私钥执行相同的步骤对文本Hash、数字签名,最后得到的结果都没什么问题,但事实上浏览器看到的东西却不是真实服务器给的,而是被张三从里到外(公钥到私钥)换了一通。那么如何保证你现在使用的公钥就是真实服务器发给你的呢?我们就用数字证书来解决这个问题。数字证书一般由数字证书认证机构(Certificate Authority)颁发,证书里面包含了真实服务器的公钥和网站的一些其他信息,数字证书机构用自己的私钥加密后发给浏览器,浏览器使用数字证书机构的公钥解密后得到真实服务器的公钥。这个过程是建立在被大家所认可的证书机构之上得到的公钥,所以这是一种安全的方式。

常见的对称加密算法有DES、3DES、AES、RC5、RC6。非对称加密算法应用非常广泛,如SSH,

HTTPS, TLS,电子证书,电子签名,电子身份证等等。

参考 DES/3DES/AES区别

RSA加解密原理以及三种填充模式

如果需要理解RSA的加密原理,需要理解以下理论:

等同于求一元二次方程 23 * d + 192 * y = 1

可以求得其中一解为(d=167,y=-20)

至此就完成了所有的计算

对于上述例子的到公钥(221,23)和私钥(221,167)

在上述的计算过程中一共用到了

上面用到的数中只有公钥部分是公开的,即(221,23)。那么我们是否可以通过公钥来推到出私钥部分,即已知n和e,推到出d?

(1)ed 1(mod (n)),只有知道 (n)才能解出d

(2) (n)= (p) (q)= (p-1) (q-1),只有知道p和q才能得到 (n)

(3)n=p q,就需要对n进行因式分解

那么如果可以对n因式分解就可以求出d,也就意味着私匙被破解

那么RSA加密的可靠性就在于对n因式分解的难度,而现在对一个整数n做因式分解并没有巧妙的算法,只有通过暴力破解计算。在实际应用中的n取值通常在1024位以上,而公开已知的可因式分解的最大数为768位。所以现阶段来说RSA加密是可靠的。

现在我们就可以进行加密和解密了

我们使用上面生成的公钥(221,23)来加密。如果我们需要加密的信息是m( m必须为整数并且m要小于n ),m取56,可以用以下公式求出加密串c:

c (mod n)

10 (mod 221)

可以求出加密后的结果c为10

密钥为(221,167),加密结果c=10,可以使用以下公式求出被加密的信息

m (mod n) 即加密结果的d次方除以n的余数为m

56 (mod 221)

RSA加密属于块加密算法,总是在一个固定长度的块上进行操作。如果被加密的字符串过长,则需要对字符串进行切割,如果字符串过短则需要进行填充。

以下主介绍一下RSA_PKCS1_PADDING填充模式以及RSA_NO_PADDING模式

此填充模式是最常用的填充模式,在此填充模式下输入的长度受加密钥的长度限制,输入的最大长度为加密钥的位数k-11。如果公钥的长度为1024位即128字节,那么输入的长度最多为128-11=117字节。如果长度小于117就需要填充。如果输入T的长度为55字节,填充后的块为EM,则EM格式如下:

EM= 0x00 || BT || PS || 0x00 || T

在此填充模式下,输入的长度最多和RSA公钥长度一样长,如果小于公钥长度则会在前面填充0x00。如果公钥长度是128字节,输入T的长度为55字节,填充后的块为EM,则EM格式如下:

EM=P || T

参考:

RSA密码体制抗破解的原理是什么?

RSA密码体制抗破解的原理是:利用Euclid 算法计算解密密钥d, 满足de≡1(mod φ(n))。其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。

现在常规的密码破解方式有两种,分别是暴力破解和字典破解。通常的破解软件你还可以设置字符集(比如选择是否算上符号,大小写字母和数字等)。用这种方式只要密码不超过能破译的长度范围,在一定时间下是一定能破解出来的,唯一缺点就是速度太慢。

为提高保密强度

RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要。

公钥密码→RSA详解

在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。用于解密的密钥必须被配送给接收者,这一问题称为 密钥配送问题 ,如果使用公钥密码,则无需向接收者配送用于解密的密钥,这样就解决了密钥配送问题。可以说公钥密码是密码学历史上最伟大的发明。

解决密钥配送问题的方法

在人数很多的情况下,通信所需要的密钥数量会增大,例如:1000名员工中每一个人都可以和另外999个进行通信,则每个人需要999个通信密钥,整个密钥数量:

1000 x 999 ÷ 2 = 499500

很不现实,因此此方法有一定的局限性

在Diffic-Hellman密钥交换中,进行加密通信的双方需要交换一些信息,而这些信息即便被窃听者窃听到也没有问题(后续文章会进行详解)。

在对称密码中,加密密钥和解密密钥是相同的,但公钥密码中,加密密钥和解密密钥却是不同的。只要拥有加密密钥,任何人都可以加密,但没有解密密钥是无法解密的。

公钥密码中,密钥分为加密密钥(公钥)和解密密钥(私钥)两种。

公钥和私钥是一一对应的,一对公钥和私钥统称为密钥对,由公钥进行加密的密文,必须使用与该公钥配对的私钥才能够解密。密钥对中的两个密钥之间具有非常密切的关系——数学上的关系——因此公钥和私钥是不能分别单独生成的。

发送者:Alice      接收者:Bob      窃听者:Eve

通信过程是由接收者Bob来启动的

公钥密码解决了密钥配送的问题,但依然面临着下面的问题

RSA是目前使用最广泛的公钥密码算法,名字是由它的三位开发者,即Ron Rivest、Adi Shamir和Leonard Adleman的姓氏的首字母组成的(Rivest-Shamir-Adleman)。RSA可以被使用公钥密码和数字签名(此文只针对公钥密码进行探讨,数字签名后续文章敬请期待)1983年在美国取得了专利,但现在该专利已经过期。

在RSA中,明文、密钥和密文都是数字,RSA加密过程可以用下列公式来表达

密文 = 明文 E mod N

简单的来说,RSA的密文是对代表明文的数字的 E 次方求mod N 的结果,换句话说:将明文和自己做 E 次乘法,然后将结果除以 N 求余数,这个余数就是密文。

RSA解密过程可以用下列公式来表达

明文 = 密文 D mod N

对表示密文的数字的 D 次方求mod N 就可以得到明文,换句话说:将密文和自己做 D 次乘法,在对其结果除以 N 求余数,就可以得到明文

此时使用的数字 N 和加密时使用的数字 N 是相同的,数 D 和数 N 组合起来就是RSA的解密密钥,因此 D 和 N 的组合就是私钥 。只要知道 D 和 N 两个数的人才能够完成解密的运算

根据加密和解密的公式可以看出,需要用到三个数—— E 、 D 和 N 求这三个数就是 生成密钥对 ,RSA密钥对的生成步骤如下:

准备两个很大的质数 p 和 q ,将这两个数相乘,结果就是 N

N = p x q

L 是 p-1 和 q-1 的最小公倍数,如果用lcm( X , Y )来表示 “ X 和 Y 的最小公倍数” 则L可以写成下列形式

L = lcm ( p - 1, q - 1)

E 是一个比1大、比 L 小的数。 E 和 L 的最大公约数必须为1,如果用gcd( X , Y )来表示 X 和 Y 的最大公约数,则 E 和 L 之间存在下列关系:

1 E L

gcd( E , L ) = 1 (是为了保证一定存在解密时需要使用的数 D )

1 D L

E x D mod L = 1

p = 17

q = 19

N = p x q = 17 x 19 = 323

L = lcm ( p - 1, q - 1) = lcm (16,18) = 144

gcd( E , L ) = 1

满足条件的 E 有很多:5,7,11,13,17,19,23,25,29,31...

这里选择5来作为 E ,到这里我们已经知道 E = 5    N = 323 这就是公钥

E x D mod L = 1

D = 29 可以满足上面的条件,因此:

公钥: E = 5     N = 323

私钥: D = 29    N = 323

要加密的明文必须是小于 N 的数,这是因为在加密运算中需要求 mod N 假设加密的明文是123

明文 E mod N = 123 5 mod 323 = 225(密文)

对密文225进行解密

密文 D mod N = 225 29 mod 323 = 225 10 x 225 10 x 225 9 mod 323 = (225 10 mod 323) x (225 10 mod 323) x (225 9 mod 323) = 16 x 16 x 191 mod 323 = 48896 mod 323 = 123(明文)

如果没有mod N 的话,即:

明文 = 密文 D mod N

通过密文求明文的难度不大,因为这可以看作是一个求对数的问题。

但是,加上mod N 之后,求明文就变成了求离散对数的问题,这是非常困难的,因为人类还没有发现求离散对数的高效算法。

只要知道 D ,就能够对密文进行解密,逐一尝试 D 来暴力破译RSA,暴力破解的难度会随着D的长度增加而加大,当 D 足够长时,就不能再现实的时间内通过暴力破解找出数 D

目前,RSA中所使用的 p 和 q 的长度都是1024比特以上, N 的长度为2048比特以上,由于 E 和 D 的长度可以和N差不多,因此要找出 D ,就需要进行2048比特以上的暴力破解。这样的长度下暴力破解找出 D 是极其困难的

E x D mod L = 1           L = lcm ( p - 1, q - 1)

由 E 计算 D 需要使用 p 和 q ,但是密码破译者并不知道 p 和 q

对于RSA来说,有一点非常重要,那就是 质数 p 和 q 不能被密码破译这知道 。把 p 和 q 交给密码破译者与把私钥交给密码破译者是等价的。

p 和 q 不能被密码破译者知道,但是 N = p x q 而且 N 是公开的, p 和 q 都是质数,因此由 N 求 p 和 q 只能通过 将 N 进行质因数分解 ,所以说:

一旦发现了对大整数进行质因数分解的高效算法,RSA就能够被破译

这种方法虽然不能破译RSA,但却是一种针对机密性的有效攻击。

所谓中间人攻击,就是主动攻击者Mallory混入发送者和接收者的中间,对发送者伪装成接收者,对接收者伪装成发送者的攻击,在这里,Mallory就是“中间人”

这种攻击不仅针对RSA,而是可以针对任何公钥密码。在这个过程中,公钥密码并没有被破译,所有的密码算法也都正常工作并确保了机密性。然而,所谓的机密性并非在Alice和Bob之间,而是在Alice和Mallory之间,以及Mallory和Bob之间成立的。 仅靠公钥密码本身,是无法防御中间人攻击的。

要防御中间人攻击,还需要一种手段来确认所收到的公钥是否真的属于Bob,这种手段称为认证。在这种情况下,我们可以使用公钥的 证书 (后面会陆续更新文章来进行探讨)

网络上很多服务器在收到格式不正确的数据时都会向通信对象返回错误消息,并提示“这里的数据有问题”,然而,这种看似很贴心的设计却会让攻击者有机可乘。 攻击者可以向服务器反复发送自己生成的伪造密文,然后分析返回的错误消息和响应时间获得一些关于密钥和明文的信息。

为了抵御这种攻击,可以对密文进行“认证”,RSA-OAEP(最优非对称加密填充)正是基于这种思路设计的一种RSA改良算法。

RSA-OAEP在加密时会在明文前面填充一些认证信息,包括明文的散列值以及一定数量的0,然后用RSA进行加密,在解密的过程中,如果解密后的数据的开头没有找到正确的认证信息,则可以判定有问题,并返回固定的错误消息(重点是,不能将具体的错误内容告知开发者)

RSA-OAEP在实际应用中,还会通过随机数使得每次生成的密文呈现不同的排列方式,从而进一步提高安全性。

随着计算机技术的进步等,以前被认为是安全的密码会被破译,这一现象称为 密码劣化 ,针对这一点:

为何能分解大整数n即意味着破解rsa算法?

因为如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。

对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。

RSA算法简介:

RSA算法是一种加密算法,广泛应用于现在的信息加密传输等领域,它的狭义应用流程如下:

现在加如你需要传送某一串信息M(这里简化为数字)给一些人,利用RSA算法加密以后你可以得到一个密文C,然后你将密文C传送给你需要传达的人,而对方有一个密钥D,对方可以比较容易地利用密钥D将密文C解密得到需要的信息M。

那么这里为了传输信息的保密,我们就要尽可能保证密文C不会被其它人解密,也就是尽可能无法让旁人得到D的值。

rsa算法的攻击方法有哪些

1 密码破译者知道的信息

密文:可以通过窃听来获取。

数E和N:公钥是公开的信息,因此密码破译者知道E和N。 

2 密码破译者不知道的信息

明文:需要破译的内容。

数D:私钥至少D是不知道的信息。

其他:密码破译者不知道生成密钥对时所使用的p、q和L

二 通过密文来求明文

RSA的加密过程如下。

密文=明文的E次方 mod N

由于密码破译者知道密文、E和N,那么有没有一种方法能够用E次方 mod N之后的密文求出原来的明文呢?如果没有 mod

N的话,即:

密文=明文的E次方

通过密文求明文的难度不大,因为这可以被看作是一个求对数的问题。

但是,加上 mod N之后,求明文就变成了求离散对数的问题,这是非常困难的,因为人类还没有发现求离散对数的高效算法。

三 通过暴力破解来找出D

只要知道数D,就能够对密文进行解密。因此,可以逐一尝试有可能作为D的数字来破译RSA,也就是暴力破解法。暴力破解的难度会随着D的长度增加而变大,当D足够长时,就不可能在现实的时间内通过暴力破解找出数D。

现在,RSA中所使用的p和q的长度都在1024比特以上,N的长度为2048比特以上。由于E和D的长度可以和N差不多,因此要找出D,就需要进行2048比特以上的暴力破解。要在这样的长度下用暴力破解找出D是极其困难的。

标签: rsa暴力破解

相关文章

黑客常用英语,超级黑客简单概括英语

黑客常用英语,超级黑客简单概括英语

求复活 主要的情节概括 1、简述《复活》中卡秋莎和涅赫留朵夫在草地玩”捉人”游戏情节。一次女邻居到涅赫留朵夫姑姑家,喝完茶后到草地玩”捉人”游戏,也带了卡秋莎,玩了几回也轮到卡秋莎和涅赫留朵夫一起跑,...

黑客攻击指令,较量—黑客命令

黑客攻击指令,较量—黑客命令

黑客常用的网络命令有哪些呀 分别是什么呀 怎么用的呀 net user heibai lovechina /add 加一个heibai的用户密码为love...

winrar破解版网盘资源,winrar破解版

winrar破解版网盘资源,winrar破解版

请问有没有WinRAR去广告破解版?求 WinRAR的去广告破解版是有的,但是这些软件不是官方版本,不能保证是否安全,可以去卡饭论坛,五一破解等软件分享平台看看,使用这类软件前要注意杀毒。WinRAR...

黑客小技术,黑客微型

黑客小技术,黑客微型

黑客攻击主要有哪些手段? 攻击手段黑客攻击手段可分为非破坏性攻击和破坏性攻击两类。非破坏性攻击一般是为了扰乱系统的运行,并不盗窃系统资料,通常采用拒绝服务攻击或信息炸弹;破坏性攻击是以侵入他人电脑系统...

死之绝境破解版下载,死之绝境破解版

死之绝境破解版下载,死之绝境破解版

僵尸复活被僵尸咬死的女孩子扮演者 僵尸复活中被僵尸咬死的女孩子扮演者是黄之杨,《僵尸复活》是 林伟贤执导的电影,主演有王合喜、黄子扬和颜仟汶,该电影上映于2003年,由紫月集团出品,该电影片长82分钟...

破解版导航连接,导航破解了后

破解版导航连接,导航破解了后

北斗密码被清华才女破解,曾获美高度评价,为何如今却被解雇? 前言如果时间倒退几十年的话,那时的中国经济科技方面都还处于比较落后的状态,在这种落后状态下,很多优秀的人才根本就不愿意到中国来。特别是一些比...

评论列表

访客
2022-10-27 20:30:02

加密钥的长度限制,输入的最大长度为加密钥的位数k-11。如果公钥的长度为1024位即128字节,那么输入的长度最多为128-11=117字节。如果长度小于117就需要填充。如果输入T的长度为55字节,填充后的

访客
2022-10-27 23:31:11

数字变成了一串非常有意义的话: Eat the beancurd with the peanut. Taste like the ham. 这种加密方法是将原来的某种信息按照某个规律打乱。某种打乱的方式就叫做密钥(cipher code)。发出信息的人根据密钥来给信息加密,而接收信息的人利用

访客
2022-10-28 02:29:10

法确定所有的真实服务器是不是真的是真实的,举一个简单的例子:A厂家给你们家安装锁,同时把钥匙也交给你,只要钥匙能打开锁,你就可以确定钥匙和锁是配对的,如果有人把钥匙换了或者把锁换

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。